Me

DO NOT LOOK THIS ONE .

View on GitHub

BACK


Kafka-node

Kafka-node是一个建立在 Apache Kafka 0.9版本及之后的Node.js客户端

目录

API

KafkaClient

新的 KafkaClient 连接,直接连接 kafka 的 broker 上

Options

例子

const client = new kafka.KafkaClient({kafkaHost: '10.3.100.196:9092'});

Producer

Producer(KafkaClient, [options], [customPartitioner])

    // Configuration for when to consider a message as acknowledged, default 1
    requireAcks: 1,
    // The amount of time in milliseconds to wait for all acks before considered, default 100ms
    ackTimeoutMs: 100,
    // Partitioner type (default = 0, random = 1, cyclic = 2, keyed = 3, custom = 4), default 0
    partitionerType: 2
var kafka = require('kafka-node'),
    Producer = kafka.Producer,
    client = new kafka.KafkaClient(),
    producer = new Producer(client);

Events

send(payloads, cb)

{
   topic: 'topicName',
   messages: ['message body'], // multi messages should be a array, single message can be just a string or a KeyedMessage instance
   key: 'theKey', // string or buffer, only needed when using keyed partitioner
   partition: 0, // default 0
   attributes: 2, // default: 0
   timestamp: Date.now() // <-- defaults to Date.now() (only available with kafka v0.10+)
}

attributes controls compression of the message set. It supports the following values:

Example:

var kafka = require('./kafka-node'),
    Producer = kafka.Producer,
    KeyedMessage = kafka.KeyedMessage,
    client = new kafka.KafkaClient(),
    producer = new Producer(client),
    km = new KeyedMessage('key', 'message'),
    payloads = [
        { topic: 'topic1', messages: 'hi', partition: 0 },
        { topic: 'topic2', messages: ['hello', 'world', km] }
    ];
producer.on('ready', function () {
    producer.send(payloads, function (err, data) {
        console.log(data);
    });
});

producer.on('error', function (err) {})

createTopics(topics, cb)

This method is used to create topics on the Kafka server. It requires Kafka 0.10+.

Example:

var kafka = require('kafka-node');
var client = new kafka.KafkaClient();

var topicsToCreate = [{
  topic: 'topic1',
  partitions: 1,
  replicationFactor: 2
},
{
  topic: 'topic2',
  partitions: 5,
  replicationFactor: 3,
  // Optional set of config entries
  configEntries: [
    {
      name: 'compression.type',
      value: 'gzip'
    },
    {
      name: 'min.compaction.lag.ms',
      value: '50'
    }
  ],
  // Optional explicit partition / replica assignment
  // When this property exists, partitions and replicationFactor properties are ignored
  replicaAssignment: [
    {
      partition: 0,
      replicas: [3, 4]
    },
    {
      partition: 1,
      replicas: [2, 1]
    }
  ]
}];

client.createTopics(topicsToCreate, (error, result) => {
  // result is an array of any errors if a given topic could not be created
});

HighLevelProducer

HighLevelProducer(KafkaClient, [options], [customPartitioner])

{
    // Configuration for when to consider a message as acknowledged, default 1
    requireAcks: 1,
    // The amount of time in milliseconds to wait for all acks before considered, default 100ms
    ackTimeoutMs: 100
}
var kafka = require('kafka-node'),
    HighLevelProducer = kafka.HighLevelProducer,
    client = new kafka.KafkaClient(),
    producer = new HighLevelProducer(client);

Events

send(payloads, cb)

{
   topic: 'topicName',
   messages: ['message body'], // multi messages should be a array, single message can be just a string,
   key: 'theKey', // string or buffer, only needed when using keyed partitioner
   attributes: 1,
   timestamp: Date.now() // <-- defaults to Date.now() (only available with kafka v0.10 and KafkaClient only)
}

Example:

var kafka = require('kafka-node'),
    HighLevelProducer = kafka.HighLevelProducer,
    client = new kafka.KafkaClient(),
    producer = new HighLevelProducer(client),
    payloads = [
        { topic: 'topic1', messages: 'hi' },
        { topic: 'topic2', messages: ['hello', 'world'] }
    ];
producer.on('ready', function () {
    producer.send(payloads, function (err, data) {
        console.log(data);
    });
});

createTopics(topics, async, cb)

This method is used to create topics on the Kafka server. It only work when auto.create.topics.enable, on the Kafka server, is set to true. Our client simply sends a metadata request to the server which will auto create topics. When async is set to false, this method does not return until all topics are created, otherwise it returns immediately.

Example:

var kafka = require('kafka-node'),
    HighLevelProducer = kafka.HighLevelProducer,
    client = new kafka.KafkaClient(),
    producer = new HighLevelProducer(client);
// Create topics sync
producer.createTopics(['t','t1'], false, function (err, data) {
    console.log(data);
});
// Create topics async
producer.createTopics(['t'], true, function (err, data) {});
producer.createTopics(['t'], function (err, data) {});// Simply omit 2nd arg

ProducerStream

ProducerStream (options)

Options

Streams Example

In this example we demonstrate how to stream a source of data (from stdin) to kafka (ExampleTopic topic) for processing. Then in a separate instance (or worker process) we consume from that kafka topic and use a Transform stream to update the data and stream the result to a different topic using a ProducerStream.

Stream text from stdin and write that into a Kafka Topic

const Transform = require('stream').Transform;
const ProducerStream = require('./lib/producerStream');
const _ = require('lodash');
const producer = new ProducerStream();

const stdinTransform = new Transform({
  objectMode: true,
  decodeStrings: true,
  transform (text, encoding, callback) {
    text = _.trim(text);
    console.log(`pushing message ${text} to ExampleTopic`);
    callback(null, {
      topic: 'ExampleTopic',
      messages: text
    });
  }
});

process.stdin.setEncoding('utf8');
process.stdin.pipe(stdinTransform).pipe(producer);

Use ConsumerGroupStream to read from this topic and transform the data and feed the result of into the RebalanceTopic Topic.

const ProducerStream = require('./lib/producerStream');
const ConsumerGroupStream = require('./lib/consumerGroupStream');
const resultProducer = new ProducerStream();

const consumerOptions = {
  kafkaHost: '127.0.0.1:9092',
  groupId: 'ExampleTestGroup',
  sessionTimeout: 15000,
  protocol: ['roundrobin'],
  asyncPush: false,
  id: 'consumer1',
  fromOffset: 'latest'
};

const consumerGroup = new ConsumerGroupStream(consumerOptions, 'ExampleTopic');

const messageTransform = new Transform({
  objectMode: true,
  decodeStrings: true,
  transform (message, encoding, callback) {
    console.log(`Received message ${message.value} transforming input`);
    callback(null, {
      topic: 'RebalanceTopic',
      messages: `You have been (${message.value}) made an example of`
    });
  }
});

consumerGroup.pipe(messageTransform).pipe(resultProducer);

Consumer

Consumer(client, payloads, options)

{
   topic: 'topicName',
   offset: 0, //default 0
   partition: 0 // default 0
}
{
    groupId: 'kafka-node-group',//consumer group id, default `kafka-node-group`
    // Auto commit config
    autoCommit: true,
    autoCommitIntervalMs: 5000,
    // The max wait time is the maximum amount of time in milliseconds to block waiting if insufficient data is available at the time the request is issued, default 100ms
    fetchMaxWaitMs: 100,
    // This is the minimum number of bytes of messages that must be available to give a response, default 1 byte
    fetchMinBytes: 1,
    // The maximum bytes to include in the message set for this partition. This helps bound the size of the response.
    fetchMaxBytes: 1024 * 1024,
    // If set true, consumer will fetch message from the given offset in the payloads
    fromOffset: false,
    // If set to 'buffer', values will be returned as raw buffer objects.
    encoding: 'utf8',
    keyEncoding: 'utf8'
}

Example:

var kafka = require('kafka-node'),
    Consumer = kafka.Consumer,
    client = new kafka.KafkaClient(),
    consumer = new Consumer(
        client,
        [
            { topic: 't', partition: 0 }, { topic: 't1', partition: 1 }
        ],
        {
            autoCommit: false
        }
    );

on(‘message’, onMessage);

By default, we will consume messages from the last committed offset of the current group

Example:

consumer.on('message', function (message) {
    console.log(message);
});

on(‘error’, function (err) {})

on(‘offsetOutOfRange’, function (err) {})

addTopics(topics, cb, fromOffset)

Add topics to current consumer, if any topic to be added not exists, return error

Example:

consumer.addTopics(['t1', 't2'], function (err, added) {
});

or

consumer.addTopics([{ topic: 't1', offset: 10 }], function (err, added) {
}, true);

removeTopics(topics, cb)

Example:

consumer.removeTopics(['t1', 't2'], function (err, removed) {
});

commit(cb)

Commit offset of the current topics manually, this method should be called when a consumer leaves

Example:

consumer.commit(function(err, data) {
});

setOffset(topic, partition, offset)

Set offset of the given topic

Example:

consumer.setOffset('topic', 0, 0);

pause()

Pause the consumer. Calling pause does not automatically stop messages from being emitted. This is because pause just stops the kafka consumer fetch loop. Each iteration of the fetch loop can obtain a batch of messages (limited by fetchMaxBytes).

resume()

Resume the consumer. Resumes the fetch loop.

pauseTopics(topics)

Pause specify topics

consumer.pauseTopics([
    'topic1',
    { topic: 'topic2', partition: 0 }
]);

resumeTopics(topics)

Resume specify topics

consumer.resumeTopics([
    'topic1',
    { topic: 'topic2', partition: 0 }
]);

close(force, cb)

Example

consumer.close(true, cb);
consumer.close(cb); //force is disabled

ConsumerStream

Consumer implemented using node’s Readable stream interface. Read more about streams here.

Notes

Compared to Consumer

Similar API as Consumer with some exceptions. Methods like pause and resume in ConsumerStream respects the toggling of flow mode in a Stream. In Consumer calling pause() just paused the fetch cycle and will continue to emit message events. Pausing in a ConsumerStream should immediately stop emitting data events.

ConsumerStream(client, payloads, options)

ConsumerGroup

ConsumerGroup(options, topics)

var options = {
  kafkaHost: 'broker:9092', // connect directly to kafka broker (instantiates a KafkaClient)
  batch: undefined, // put client batch settings if you need them
  ssl: true, // optional (defaults to false) or tls options hash
  groupId: 'ExampleTestGroup',
  sessionTimeout: 15000,
  // An array of partition assignment protocols ordered by preference.
  // 'roundrobin' or 'range' string for built ins (see below to pass in custom assignment protocol)
  protocol: ['roundrobin'],
  encoding: 'utf8', // default is utf8, use 'buffer' for binary data

  // Offsets to use for new groups other options could be 'earliest' or 'none' (none will emit an error if no offsets were saved)
  // equivalent to Java client's auto.offset.reset
  fromOffset: 'latest', // default
  commitOffsetsOnFirstJoin: true, // on the very first time this consumer group subscribes to a topic, record the offset returned in fromOffset (latest/earliest)
  // how to recover from OutOfRangeOffset error (where save offset is past server retention) accepts same value as fromOffset
  outOfRangeOffset: 'earliest', // default
  // Callback to allow consumers with autoCommit false a chance to commit before a rebalance finishes
  // isAlreadyMember will be false on the first connection, and true on rebalances triggered after that
  onRebalance: (isAlreadyMember, callback) => { callback(); } // or null
};

var consumerGroup = new ConsumerGroup(options, ['RebalanceTopic', 'RebalanceTest']);

// Or for a single topic pass in a string

var consumerGroup = new ConsumerGroup(options, 'RebalanceTopic');

Custom Partition Assignment Protocol

You can pass a custom assignment strategy to the protocol array with the interface:

string :: name

integer :: version

object :: userData

function :: assign (topicPartition, groupMembers, callback)

topicPartition

{
  "RebalanceTopic": [
    "0",
    "1",
    "2"
  ],
  "RebalanceTest": [
    "0",
    "1",
    "2"
  ]
}

groupMembers

[
  {
    "subscription": [
      "RebalanceTopic",
      "RebalanceTest"
    ],
    "version": 0,
    "id": "consumer1-8db1b117-61c6-4f91-867d-20ccd1ad8b3d"
  },
  {
    "subscription": [
      "RebalanceTopic",
      "RebalanceTest"
    ],
    "version": 0,
    "id": "consumer3-bf2d11f4-1c73-4a39-b498-cfe76eb65bea"
  },
  {
    "subscription": [
      "RebalanceTopic",
      "RebalanceTest"
    ],
    "version": 0,
    "id": "consumer2-9781058e-fad4-40e8-a69c-69afbae05184"
  }
]

callback(error, result)

result

[
  {
    "memberId": "consumer3-bf2d11f4-1c73-4a39-b498-cfe76eb65bea",
    "topicPartitions": {
      "RebalanceTopic": [
        "2"
      ],
      "RebalanceTest": [
        "2"
      ]
    },
    "version": 0
  },
  {
    "memberId": "consumer2-9781058e-fad4-40e8-a69c-69afbae05184",
    "topicPartitions": {
      "RebalanceTopic": [
        "1"
      ],
      "RebalanceTest": [
        "1"
      ]
    },
    "version": 0
  },
  {
    "memberId": "consumer1-8db1b117-61c6-4f91-867d-20ccd1ad8b3d",
    "topicPartitions": {
      "RebalanceTopic": [
        "0"
      ],
      "RebalanceTest": [
        "0"
      ]
    },
    "version": 0
  }
]

on(‘message’, onMessage);

By default, we will consume messages from the last committed offset of the current group

Example:

consumer.on('message', function (message) {
    console.log(message);
});

on(‘error’, function (err) {})

on(‘offsetOutOfRange’, function (err) {})

commit(force, cb)

Commit offset of the current topics manually, this method should be called when a consumer leaves

Example:

consumer.commit(function(err, data) {
});

pause()

Pause the consumer. Calling pause does not automatically stop messages from being emitted. This is because pause just stops the kafka consumer fetch loop. Each iteration of the fetch loop can obtain a batch of messages (limited by fetchMaxBytes).

resume()

Resume the consumer. Resumes the fetch loop.

close(force, cb)

Example:

consumer.close(true, cb);
consumer.close(cb); //force is disabled

ConsumerGroupStream

The ConsumerGroup wrapped with a Readable stream interface. Read more about consuming Readable streams here.

Same notes in the Notes section of ConsumerStream applies to this stream.

Auto Commit

ConsumerGroupStream manages auto commits differently than ConsumerGroup. Whereas the ConsumerGroup would automatically commit offsets of fetched messages the ConsumerGroupStream will only commit offsets of consumed messages from the stream buffer. This will be better for most users since it more accurately represents what was actually “Consumed”. The interval at which auto commit fires off is still controlled by the autoCommitIntervalMs option and this feature can be disabled by setting autoCommit to false.

ConsumerGroupStream (consumerGroupOptions, topics)

commit(message, force, callback)

This method can be used to commit manually when autoCommit is set to false.

close(callback)

Closes the ConsumerGroup. Calls callback when complete. If autoCommit is enabled calling close will also commit offsets consumed from the buffer.

Offset

Offset(client)

events

fetch(payloads, cb)

Fetch the available offset of a specific topic-partition

{
   topic: 'topicName',
   partition: 0, //default 0
   // time:
   // Used to ask for all messages before a certain time (ms), default Date.now(),
   // Specify -1 to receive the latest offsets and -2 to receive the earliest available offset.
   time: Date.now(),
   maxNum: 1 //default 1
}

Example

var kafka = require('./kafka-node'),
    client = new kafka.KafkaClient(),
    offset = new kafka.Offset(client);
    offset.fetch([
        { topic: 't', partition: 0, time: Date.now(), maxNum: 1 }
    ], function (err, data) {
        // data
        // { 't': { '0': [999] } }
    });

fetchCommits(groupid, payloads, cb)

Fetch the last committed offset in a topic of a specific consumer group

{
   topic: 'topicName',
   partition: 0 //default 0
}

Example

var kafka = require('./kafka-node'),
    client = new kafka.KafkaClient(),
    offset = new kafka.Offset(client);
    offset.fetchCommitsV1('groupId', [
        { topic: 't', partition: 0 }
    ], function (err, data) {
    });

fetchCommitsV1(groupid, payloads, cb)

Alias of fetchCommits.

fetchLatestOffsets(topics, cb)

Example

	var partition = 0;
	var topic = 't';
	offset.fetchLatestOffsets([topic], function (error, offsets) {
		if (error)
			return handleError(error);
		console.log(offsets[topic][partition]);
	});

fetchEarliestOffsets(topics, cb)

Example

	var partition = 0;
	var topic = 't';
	offset.fetchEarliestOffsets([topic], function (error, offsets) {
		if (error)
			return handleError(error);
		console.log(offsets[topic][partition]);
	});

Admin

This class provides administrative APIs can be used to monitor and administer the Kafka cluster.

Admin (KafkaClient)

listGroups(cb)

List the consumer groups managed by the kafka cluster.

Example:

const client = new kafka.KafkaClient();
const admin = new kafka.Admin(client); // client must be KafkaClient
admin.listGroups((err, res) => {
  console.log('consumerGroups', res);
});

Result:

consumerGroups { 'console-consumer-87148': 'consumer',
  'console-consumer-2690': 'consumer',
  'console-consumer-7439': 'consumer'
}

describeGroups(consumerGroups, cb)

Fetch consumer group information from the cluster. See result for detailed information.

Example:

admin.describeGroups(['console-consumer-2690'], (err, res) => {
  console.log(JSON.stringify(res,null,1));
})

Result:

{
 "console-consumer-2690": {
  "members": [
   {
    "memberId": "consumer-1-20195e12-cb3b-4ba4-9076-e7da8ed0d57a",
    "clientId": "consumer-1",
    "clientHost": "/192.168.61.1",
    "memberMetadata": {
     "subscription": [
      "twice-tt"
     ],
     "version": 0,
     "userData": "JSON parse error",
     "id": "consumer-1-20195e12-cb3b-4ba4-9076-e7da8ed0d57a"
    },
    "memberAssignment": {
     "partitions": {
      "twice-tt": [
       0,
       1
      ]
     },
     "version": 0,
     "userData": "JSON Parse error"
    }
   }
  ],
  "error": null,
  "groupId": "console-consumer-2690",
  "state": "Stable",
  "protocolType": "consumer",
  "protocol": "range",
  "brokerId": "4"
 }
}

listTopics(cb)

List the topics managed by the kafka cluster.

Example:

const client = new kafka.KafkaClient();
const admin = new kafka.Admin(client);
admin.listTopics((err, res) => {
  console.log('topics', res);
});

Result:

[
  {
    "1001": {
      "nodeId": 1001,
      "host": "127.0.0.1",
      "port": 9092
    }
  },
  {
    "metadata": {
      "my-test-topic": {
        "0": {
          "topic": "my-test-topic",
          "partition": 0,
          "leader": 1001,
          "replicas": [
            1001
          ],
          "isr": [
            1001
          ]
        },
        "1": {
          "topic": "my-test-topic",
          "partition": 1,
          "leader": 1001,
          "replicas": [
            1001
          ],
          "isr": [
            1001
          ]
        }
      }
    },
    "clusterMetadata": {
      "controllerId": 1001
    }
  }
]

createTopics(topics, cb)

var topics = [{
  topic: 'topic1',
  partitions: 1,
  replicationFactor: 2
}];
admin.createTopics(topics, (err, res) => {
  // result is an array of any errors if a given topic could not be created
})

See createTopics

describeConfigs(payload, cb)

Fetch the configuration for the specified resources. It requires Kafka 0.11+.

Example:

const resource = {
  resourceType: admin.RESOURCE_TYPES.topic,   // 'broker' or 'topic'
  resourceName: 'my-topic-name',
  configNames: []           // specific config names, or empty array to return all,
}

const payload = {
  resources: [resource],
  includeSynonyms: false   // requires kafka 2.0+
};

admin.describeConfigs(payload, (err, res) => {
  console.log(JSON.stringify(res,null,1));
})

Result:

[
 {
  "configEntries": [
   {
    "synonyms": [],
    "configName": "compression.type",
    "configValue": "producer",
    "readOnly": false,
    "configSource": 5,
    "isSensitive": false
   },
   {
    "synonyms": [],
    "configName": "message.format.version",
    "configValue": "0.10.2-IV0",
    "readOnly": false,
    "configSource": 4,
    "isSensitive": false
   },
   {
    "synonyms": [],
    "configName": "file.delete.delay.ms",
    "configValue": "60000",
    "readOnly": false,
    "configSource": 5,
    "isSensitive": false
   },
   {
    "synonyms": [],
    "configName": "leader.replication.throttled.replicas",
    "configValue": "",
    "readOnly": false,
    "configSource": 5,
    "isSensitive": false
   },
   {
    "synonyms": [],
    "configName": "max.message.bytes",
    "configValue": "1000012",
    "readOnly": false,
    "configSource": 5,
    "isSensitive": false
   },
    ...
  ],
  "resourceType": "2",
  "resourceName": "my-topic-name"
 }
]

Troubleshooting / FAQ

HighLevelProducer with KeyedPartitioner errors on first send

Error:

BrokerNotAvailableError: Could not find the leader

Call client.refreshMetadata() before sending the first message. Reference issue #354

How do I debug an issue?

This module uses the debug module so you can just run below before starting your app.

export DEBUG=kafka-node:*

For a new consumer how do I start consuming from the latest message in a partition?

If you are using the new ConsumerGroup simply set 'latest' to fromOffset option.

Otherwise:

  1. Call offset.fetchLatestOffsets to get fetch the latest offset
  2. Consume from returned offset

Reference issue #342

ConsumerGroup does not consume on all partitions

Your partition will be stuck if the fetchMaxBytes is smaller than the message produced. Increase fetchMaxBytes value should resolve this issue.

Reference to issue #339

How to throttle messages / control the concurrency of processing messages

  1. Create a async.queue with message processor and concurrency of one (the message processor itself is wrapped with setImmediate so it will not freeze up the event loop)
  2. Set the queue.drain to resume the consumer
  3. The handler for consumer’s message event pauses the consumer and pushes the message to the queue.

How do I produce and consume binary data?

Consume

In the consumer set the encoding option to buffer.

Produce

Set the messages attribute in the payload to a Buffer. TypedArrays such as Uint8Array are not supported and need to be converted to a Buffer.

{
 messages: Buffer.from(data.buffer)
}

Reference to issue #470 #514

What are these node-gyp and snappy errors?

Snappy is a optional compression library. Windows users have reported issues with installing it while running npm install. It’s optional in kafka-node and can be skipped by using the --no-optional flag (though errors from it should not fail the install).

npm install kafka-node --no-optional --save

Keep in mind if you try to use snappy without installing it kafka-node will throw a runtime exception.

How do I configure the log output?

By default, kafka-node uses debug to log important information. To integrate kafka-node’s log output into an application, it is possible to set a logger provider. This enables filtering of log levels and easy redirection of output streams.

What is a logger provider?

A logger provider is a function which takes the name of a logger and returns a logger implementation. For instance, the following code snippet shows how a logger provider for the global console object could be written:

function consoleLoggerProvider (name) {
  // do something with the name
  return {
    debug: console.debug.bind(console),
    info: console.info.bind(console),
    warn: console.warn.bind(console),
    error: console.error.bind(console)
  };
}

The logger interface with its debug, info, warn and error methods expects format string support as seen in debug or the JavaScript console object. Many commonly used logging implementations cover this API, e.g. bunyan, pino or winston.

How do I set a logger provider?

For performance reasons, initialization of the kafka-node module creates all necessary loggers. This means that custom logger providers need to be set before requiring the kafka-node module. The following example shows how this can be done:

// first configure the logger provider
const kafkaLogging = require('kafka-node/logging');
kafkaLogging.setLoggerProvider(consoleLoggerProvider);

// then require kafka-node and continue as normal
const kafka = require('./kafka-node');

Error: Not a message set. Magic byte is 2

If you are receiving this error in your consumer double check the fetchMaxBytes configuration. If set too low the broker could start sending fetch responses in RecordBatch format instead of MessageSet.

Running Tests

Install Docker

On the Mac install Docker for Mac.

Start Docker and Run Tests

npm test

Using different versions of Kafka

Achieved using the KAFKA_VERSION environment variable.

# Runs "latest" kafka on docker hub*
npm test

# Runs test against other versions:

KAFKA_VERSION=0.9 npm test

KAFKA_VERSION=0.10 npm test

KAFKA_VERSION=0.11 npm test

KAFKA_VERSION=1.0 npm test

KAFKA_VERSION=1.1 npm test

KAFKA_VERSION=2.0 npm test

*See Docker hub tags entry for which version is considered latest.

Stop Docker

npm run stopDocker

LICENSE - “MIT”

Copyright (c) 2015 Sohu.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


BACK